R. C. I. - MENET-FP * Direction des Examens et Concours R. C. I. - MENET-FP * Direction des Examens et Concours

BACCALAURÉAT SESSION 2019

Coefficient : 3 Durée : 3h

MATHÉMATIQUES

SÉRIE A1

Cette épreuve comporte trois (03) pages numérotées 1/3, 2/3 et 3/3.
Chaque candidat recevra une feuille de papier millimétré.
Tout modèle de calculatrice scientifique est autorisé.
Les tables trigonométriques, logarithmiques et les règles à calculs sont aussi autorisées.

EXERCICE 1

Une coopérative de femmes productrices d'attiéké ambitionne d'installer une unité de production d'un coût de 3 000 000 F CFA financée par le bénéfice d'une année d'exercice. Cette coopérative a réalisé un bénéfice de 2 000 000 F CFA en 2016, 1 ère année d'exercice.

Une étude prévoit une augmentation de 10% du bénéfice d'année en année.

Pour tout entier naturel non nul n, le bénéfice de l'année n+1 est le bénéfice de l'année n augmenté de 10%.

On désigne par b_n le bénéfice de la $n^{\text{ième}}$ année d'exercice $(n \in \mathbb{N}^*)$.

- 1. a) Justifie que le bénéfice de la deuxième année d'exercice (2017) est égal à 2 200 000 F CFA.
 - b) Calcule b₃, bénéfice en 2018.
- 2. On admet que pour tout entier naturel non nul n, $b_{n+1} = (1,1) \times b_n$.
 - a) Déduis-en que (b_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b) Exprime b_n en fonction de n.
- 3. a) Détermine le plus petit entier naturel n pour lequel b_n est supérieur ou égal à 3 000 000 FCFA.
 - b) Déduis-en l'année en laquelle le bénéfice permettra à la coopérative d'acquérir son unité de production.

EXERCICE 2

Une urne contient quatre (4) boules blanches et trois (3) boules noires. Les boules sont indiscernables au toucher. On tire simultanément quatre (4) boules de l'urne.

- 1. Justifie que le nombre de tirages possibles est 35.
- 2. a) On considère l'évènement A : « Tirer autant de boules blanches que de boules noires ». Justifie que la probabilité de l'évènement A est égale à $\frac{18}{35}$.
 - b) Calcule la probabilité de l'évènement B : « Tirer au moins deux boules noires ».
 - c) Calcule la probabilité de l'évènement C : « Tirer des boules de même couleur ».

Ablanian.com

3. On associe ce tirage au jeu suivant :

Le joueur mise la somme de 100 francs avant le tirage.

Après le tirage, le joueur :

- perd sa mise s'il a tiré plus de boules noires que de boules blanches ;
- reçoit le double de sa mise s'il a tiré trois boules blanches et une boule noire ;

- reçoit sa mise pour les autres tirages.

Soit X la variable aléatoire qui associe à chaque tirage, le gain algébrique issu du tirage (différence entre le gain et la mise).

- a) Justifie que les valeurs prises par X sont : 100 ; 0 et 100.
- b) Détermine la loi de probabilité de X.
- c) Calcule l'espérance mathématique de X.
- d) Donne une interprétation de l'espérance mathématique de X trouvée.

EXERCICE 3

Le plan est muni d'un repère orthonormé (O, I, J). L'unité graphique est égale à 2 cm. On donne la fonction f définie sur]0; $+\infty[$ par : $f(x) = -2x + 2 + \ln x$. On désigne par (C) la courbe représentative de f dans le plan muni du repère (O, I, J).

- 1. a) Justifie que : $\lim_{x\to 0} f(x) = -\infty$.
 - b) Interprète graphiquement le résultat de la question 1-a).
- 2. On admet que pour tout élément x de l'intervalle]0; $+\infty[$, $f(x) = x(-2 + \frac{2}{x} + \frac{\ln x}{x})$. Justifie que : $\lim_{x \to +\infty} f(x) = -\infty$.
- 3. On suppose que f est dérivable sur l'intervalle $]0; +\infty[$.
 - a) Démontre que pour tout élément x de l'intervalle]0; $+\infty[, f'(x) = \frac{-2x+1}{x}]$.
 - b) Vérifie que : $f'(\frac{1}{2}) = 0$.
 - c) Justifie que:
 - * si $x \in]0; \frac{1}{2}[$ alors f'(x) > 0;
 - * si $x \in]\frac{1}{2}$; + ∞ [alors f'(x) < 0.
 - d) Déduis-en les variations de f.
 - e) Dresse le tableau de variations de f.
- **4.** a) Vérifie que : f(1) = 0 et $f(\frac{1}{2}) > 0$.
 - b) Justifie que l'équation f(x) = 0 admet une solution unique α dans l'intervalle]0,2;0,3[.
- 5. Justifie que la droite (T) d'équation y = -x + 1 est la tangente à (C) au point d'abscisse 1.

Ablanian.com

6. a) Recopie et complète le tableau ci-dessous.

x	0,1	0,25	0,5	1	1,5	2	3	4
Arrondi d'ordre 1 de $f(x)$	10			0			-2,9	-4,6

- b) Trace la droite (T) puis la courbe (C) sur l'intervalle]0; 4].
- Justifie que : $\ln \alpha = 2\alpha 2$.
 - Justifie que la fonction F, dérivable sur]0; $+\infty[$ et définie par : $F(x) = -x^2 + x + x \ln x$ est une primitive de $f \sin [0; +\infty[$.
 - c) On note A(α) l'aire en cm² de la partie du plan délimitée par la courbe (C), la droite (OI) et les droites d'équations : $x = \alpha$ et x = 1. Exprime $A(\alpha)$ en fonction de α .

